DEFENDING WORLD SECURITY

Security and Communication Solutions

Alina Alexandra FLOREA, Research Engineer – PhD Student.

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM March 6th 2012

AN EADS COMPANY

Summary

1. Purpose of the study,

• why LTE from a PMR perspective?

2. LTE, towards 4G,

- existent solutions for voice transmission,
- transmission system description.

3. LTE voice capacity evaluation

- proposed system for a PMR use case,
- results.

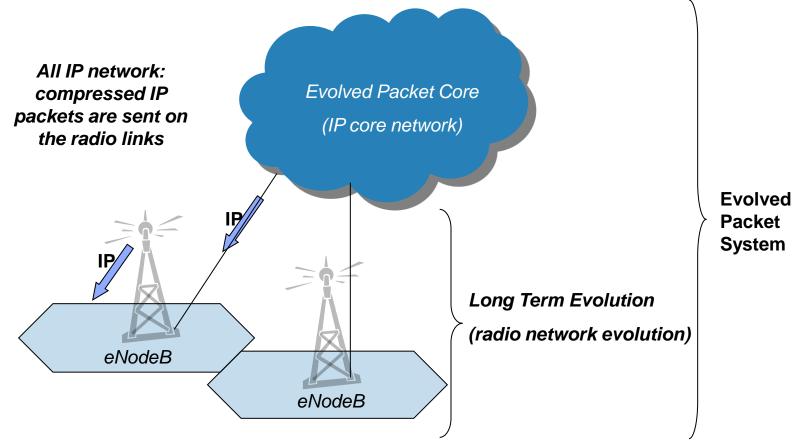
4. Conclusions.

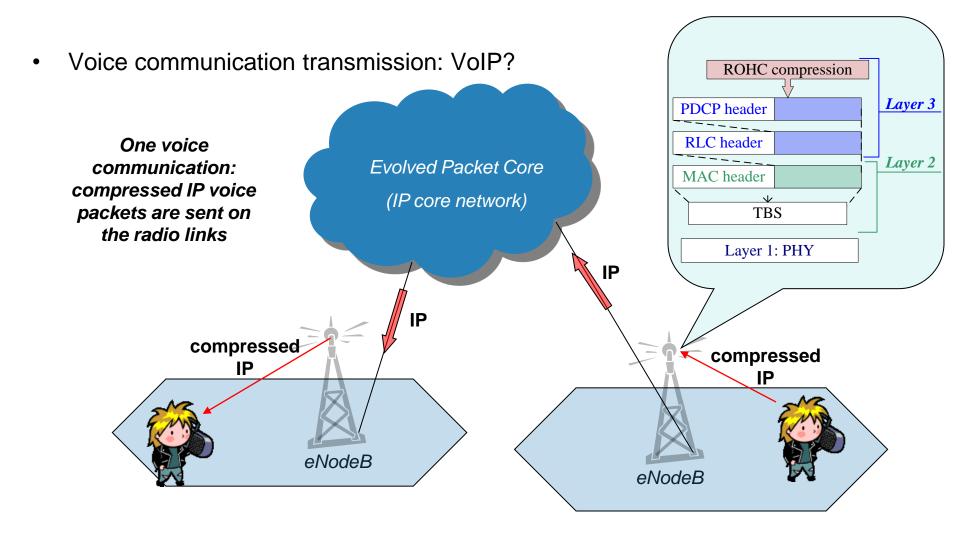
Purpose of the study, why LTE from a PMR perspective?

- PMR = Private or Professional Mobile Radio
 - public safety, critical situations (emergencies, disasters), industrial use,
 - 2G: digital narrowband (10 to 25 kHz), trunked allocation strategy, voice transmission using circuit-switched concepts.
 - **TETRA** (Terrestrial Trunked Radio) ETSI,
 - **Tetrapol** EADS proprietary.
 - 3G: **TEDS** (TETRA Enhanced Data System).

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM

Purpose of the study, why LTE from a PMR perspective?


- What is a PMR perspective?
 - frequencies used in the UHF: 400 MHz (Europe) and 700MHz (USA), with reduced dedicated bandwidths
 analysis for the smallest LTE BW (1.4 to 5 MHz),
 - voice communications must be available in critical situations, low throughput voice transmissions are privileged for an enhanced spectrum efficiency => low bit rate voice coders (~ 5 to 6 kbps) => use of AMBE 2.45 kbps,
 - in future 4G networks, voice communications are an absolute necessity, with an enhanced spectrum efficiency!

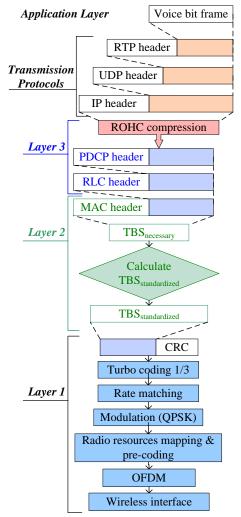


LTE, towards 4G

• 3GPP standards

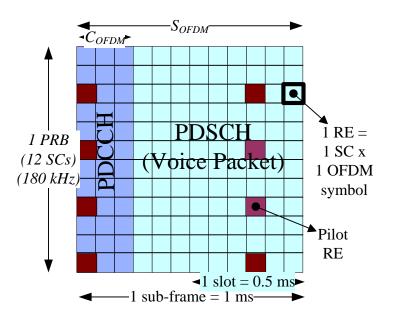
LTE, towards 4G

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM


LTE, towards 4G,

existent solutions for voice transmission

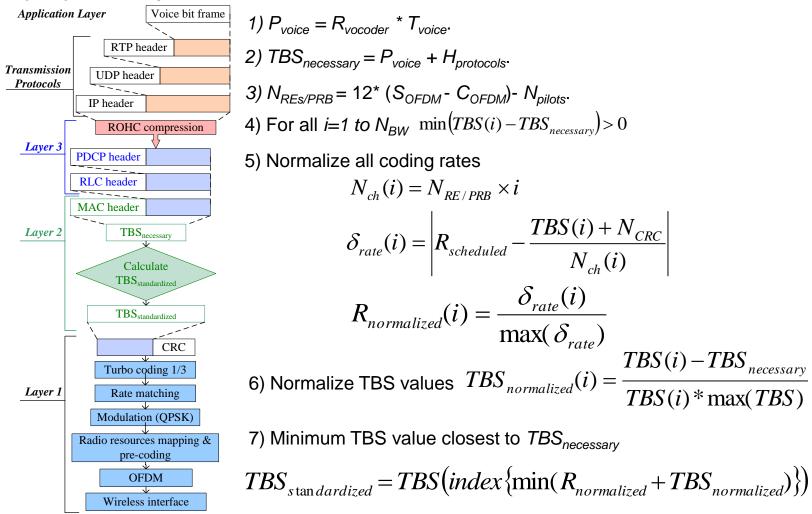
- Envisaged solution for voice communications: VoIP ?
- What is the real LTE efficiency for voice communications?
- Literature:
 - voice communications through the protocol stack
 - RLC (Radio Link Control) protocol: Unacknowledged Mode,
 - ROHC protocol compresses up to 42 % of the overhead => 3 bytes,
 - LTE spectral efficiency considering PHY key features: scheduling, CQI, MIMO, large deployment bandwidhts (10 MHz), carrier frequency 2 GHz.
- 3GPP supported solutions:
 - CS (circuit switched) fallback,
 - MMTel (IP multimedia subsystem IMS telephony),
 - SRVCC (IMS telephony with handover to CS domain).
- 3GPP not supported solutions:
 - VoLGA (voice over LTE generic access),
 - internet-based voice services.



LTE, towards 4G, transmission system description.

 $\min \left| R_{scheduled} - \frac{TBS_{s \tan dardized} + N_{CRC}}{N_{ch}} \right|$

$$N_{ch} = N_{REs/PRB} \times N_{PRB}$$



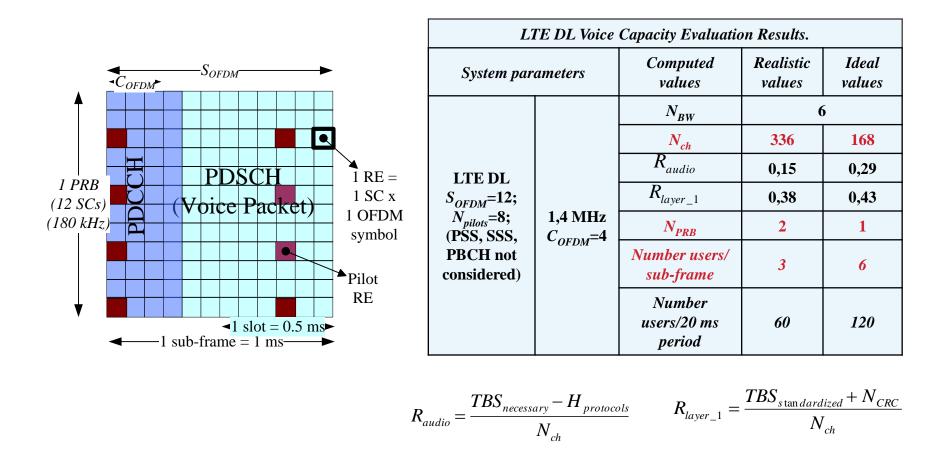
6 CASSIDIA

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM

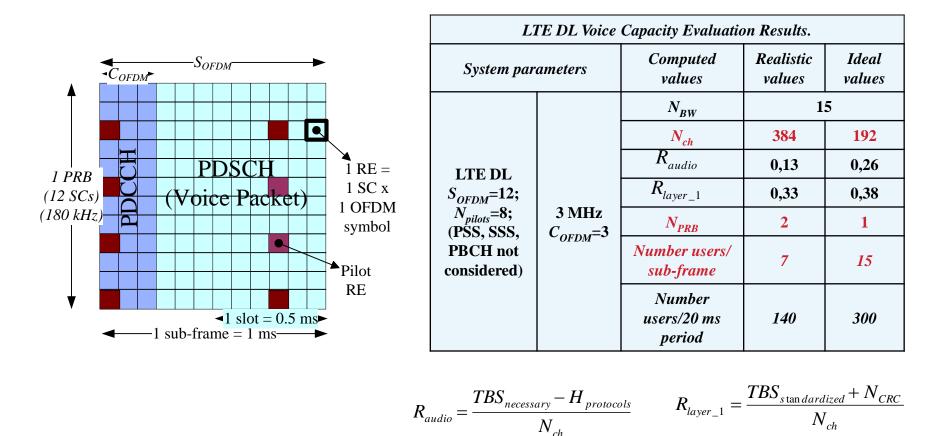
LTE voice capacity evaluation

proposed system for a PMR use case

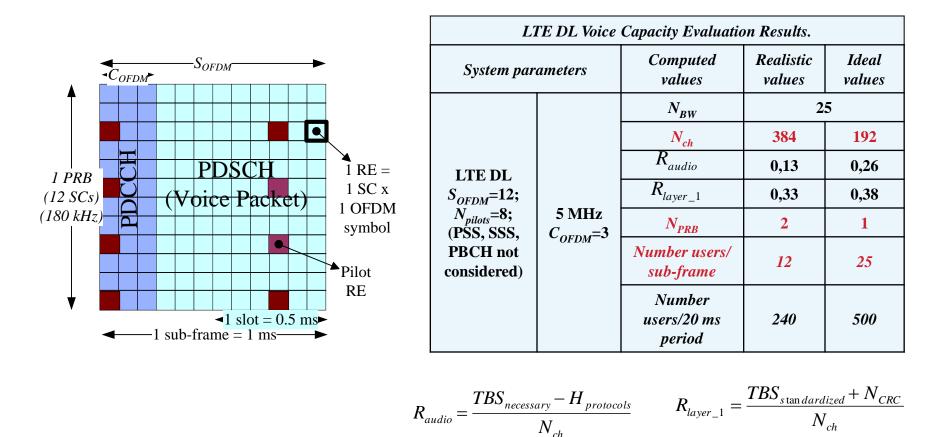
Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM


.

LTE voice capacity evaluation results


Application Layer	Voice bit frame	LTE DL Voi	ce Capacity Evaluatio	n Results.	
Transmission UDP hea	header	System parameters	Computed values	Realistic values	Ideal values
Protocols			R _{vocoder}	2450	bps
IP header ROHC compression		Voice encoder AMBE	T _{voice}	20 ms	
Laver 3			P _{voice}	49 bits	
PDCP header		Transmission protocols	RTP + UDP + IP	40 bytes	40 bytes
RLC header		PDCP ROHC compression		3 bytes	1 byte
Layer 2 TBS _{necessary}		PDCP hea	1 byte	0	
		RLC head	1 byte	0	
	lculate	MAC hea	1 byte	0	
		Higher layer overhead	H _{protocols}	6 bytes	1 byte
	standardized	Necessary LTE TBS	TBS _{necessary}	97 bits	57 bits
	CRC	Overhead percentage	H/TBS _{necessary}	49.5 %	14 %
	coding 1/3	TBS for QPSK 1/3	TBS _{standardized}	104 bits	72 bits
	matching v ion (QPSK)	PHY CRC	N _{CRC}	24 bits	0 bits
Modulat					

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM



Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM

PMR and GSM Performances Results.						
Technology	TETRA	TETRAPOL 10kHz	TETRAPOL 12,5 kHz	GSM 900		
Channel δ_f	25 kHz	10 kHz	12,5 kHz	200 kHz		
TDMA	4	1	1	8		
Number communications/ δ_f	4	1	1	8		
Number communications/ Δ_{f-BW}	224	140	112	56		
Reuse factor	16	12	12	9		
Communications/ $\Delta_{f\text{-}BW}$ /cell, $C_{BW\text{-}cell}$	14	11,66	9,33	6,22		
Voice codec bit rate, R _{vocoder}	ACELP 4,6 kbps	RPCELP 6 kbps	RPCELP 6 kbps	AMR 12,2 kbps		
Voice spectral efficiency, SE _{voice}	0,046 bits/s/Hz/cell	0,05 bits/s/Hz/cell	0,04 bits/s/Hz/cell	0,054 bits/s/Hz/cell		

LTE Per	formances Compari	son Results with PM	R and GSM.	
Technology	LTE (QPSK 1/3)	LTE (QPSK 1/3)	LTE (QPSK 1/3)	LTE (QPSK 1/3)
Channel δ_f	2x180 kHz	4x180 kHz	4x180 kHz	6x180 kHz
TDMA	20	30	20	20
Number communications/ δ_f	20	30	20	20
Number communications/ $\Delta_{f\text{-}BW}$	60	30	20	20
Reuse factor	1	1	1	1
Communications/ $\Delta_{f\text{-}BW}$ /cell, $C_{BW\text{-}cell}$	60	30	20	20
Voice codec bit rate, R _{vocoder}	AMBE 2,45 kbps	ACELP 4,6 kbps	RPCELP 6 kbps	AMR 12,2 kbps
Voice spectral efficiency, SE_{voice}	0,105 bits/s/Hz/cell	0,099 bits/s/Hz/cell	0,086 bits/s/Hz/cell	0,174 bits/s/Hz/cell
Our estimation for future PMR deployements	TETRA AC 0.04 bits/\$/Hz	6 RPCEI	RAPOL LP = 0.04 0.05 Hz/cell	GSM AMR = 0.054 <bits cell<="" hz="" s="" td=""></bits>

Multi-layer Realistic Voice Capacity Evaluation in LTE Rel. 9 and Performance Comparison with PMR and GSM

Conclusions

- The higher layer's overhead and the physical layer's CRC may represent more than 50 % of the total frame size for an average ROHC compression.
- By adjusting the overhead to lower values closer to "ideal" percentages, the LTE capacity can approach its double.
- LTE is not yet optimised for small throughputs. The TBS choice is limited.
- Radio resources allocation strategy is not optimized, a minimum of one PRB pair must be reserved for each user (large when using a very low bit rate voice communications).
- Air frame overhead: the performances may be restrained because of a limited PDCCH capacity. Persistent or semi-persistent allocation allows one PDCCH field to reserve user resources for a certain number of incoming sub-frames.
- The spectral efficiency of LTE is hardly the double of that of PMR and GSM.

DEFENDING WORLD SECURITY

Thank you!

AN EADS COMPANY